Boundedness of solutions for semilinear duffing equations
نویسنده
چکیده
منابع مشابه
Boundedness for Semilinear Duffing Equations at Resonance
In this paper, we prove the boundedness of all solutions for the equation x + n 2 x + φ(x) + g (x)q(t) = 0, where n ∈ N, q(t) = q(t + 2π), φ(x) and g(x) are bounded.
متن کامل$L^p$-existence of mild solutions of fractional differential equations in Banach space
We study the existence of mild solutions for semilinear fractional differential equations with nonlocal initial conditions in $L^p([0,1],E)$, where $E$ is a separable Banach space. The main ingredients used in the proof of our results are measure of noncompactness, Darbo and Schauder fixed point theorems. Finally, an application is proved to illustrate the results of this work.
متن کاملPeriodic Solutions of Damped Duffing-type Equations with Singularity
We consider a second order equation of Duffing type. By applying Mawhin’s continuation theorem and a relationship between the periodic and the Dirichlet boundary value problems for second order ordinary differential equations, we prove that the given equation has at least one positive periodic solution when the singular forces exhibits certain some strong force condition near the origin and wit...
متن کاملRegularity of Minimizers of Semilinear Elliptic Problems up to Dimension Four
Abstract. We consider the class of semi-stable solutions to semilinear equations −∆u = f(u) in a bounded smooth domain Ω of R (with Ω convex in some results). This class includes all local minimizers, minimal, and extremal solutions. In dimensions n ≤ 4, we establish an priori L∞ bound which holds for every semi-stable solution and every nonlinearity f . This estimate leads to the boundedness o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Applied Mathematics and Computation
دوره 132 شماره
صفحات -
تاریخ انتشار 2002